Однозначные определенные предсказания дает динамический закон

Filosofa.net

Все о философии

Главное Меню

Реклама

Рефераты по философии

Законы науки, способы их открытия и обоснования

4. Динамические и статистические законы

Если основой дихотомического деления законов на теоретические и эмпирические является их различное от­ношение к опыту, то другая важная их классификация основывается на характере тех предсказаний, которые вытекают из законов. В законах первого типа предсказа­ния носят точно определенный, однозначный характер. Так, если задан закон движения тела и известны его по­ложение и скорость в некоторый момент времени, то по этим данным можно точно определить положение и ско­рость тела в любой другой момент времени. Законы та­кого типа в нашей литературе называют динамически­ми. В зарубежной литературе их чаще всего именуют детерминистическими законами, хотя такое название, как мы увидим ниже, вызывает серьезные возражения.

В законах второго типа, которые получили название статистических, предсказания могут быть сделаны лишь вероятностным образом. В таких законах исследуемое свойство, признак или характеристика относятся не к каждому объекту или индивидууму, а ко всему классу, или популяции в целом. Так, когда говорят, что в данной партии продукции 90% изделий отвечает требованиям стандартов, то это вовсе не означает, что каждое изделие обладает 90% качеством. Само выражение в процентах показывает, что речь здесь идет лишь о некоторой части или пропорции из общего числа изделий, которые соот­ветствуют стандарту. Об отдельном же изделии без до­полнительного исследования мы не можем заранее ска­зать, является оно качественным или нет. Этот элемен­тарный пример достаточно ясно иллюстрирует основную особенность всех статистических законов, предсказания которых относительно отдельных индивидуумов или слу­чаев имеют неопределенный характер. Именно эта неоп­ределенность и заставляет исследователя вводить веро­ятностные понятия и методы для определения и оценки исхода индивидуальных событий массового случайного типа.

Уже классическая концепция вероятности, нашедшая наиболее полное выражение в трудах П. С. Лапласа, да­ет возможность оценивать исходы простейших массовых событий случайного характера. В этой концепции вероят­ность интерпретируется как «отношение числа случаев благоприятствующих к числу всех возможных случаев». При этом, конечно, предполагается, что различные слу­чаи являются равновозможными. Однако такая интер­претация имеет довольно ограниченную область приме­нения. Действительно, равновозможных событий, о кото­рых говорится в вышеприведенном определении вероят­ности, может просто не быть. Азартные игры, которые исторически явились первой моделью для применения и разработки классической концепции вероятности, специ­ально организованы таким образом, что их исходы яв­ляются одинаково возможными, или симметричными. Если, например, игральная кость изготовлена достаточно тщательно, то при ее бросании выпадение любого числа очков от 1 до 6 является одинаково возможным. По­скольку в данном примере имеется шесть равновозмож­ных случаев, благоприятствующим же является какой-то один случай, то его вероятность будет равна 1/6. По та­кой же схеме подсчитывается вероятность событий, ко­торые можно свести к равновозможным. Иногда это не удается сделать даже в сравнительно простых примерах. Так, если ту же игральную кость изготовить с дефектами, тогда выпадение каждой грани не будет равновозмож­ным. Еще более противоречащими классической концеп­ции являются примеры, взятые из физической, биологи­ческой и социальной статистики. Допустим, что вероят­ность того, что данное вещество из радиоактивного материала будет испускать a-частицу, равна 0,0374. Ясно, что этот результат никак нельзя представить по схеме равновозможных событий. Тогда нам пришлось бы допустить 10000 равновозможных исходов, из них только 374 считались бы благоприятствующими. В действитель­ности же здесь имеются лишь две возможности: либо в следующую секунду вещество испустит частицу, либо нет. Чтобы преодолеть подобные трудности, защитники классической концепции широко использовали так назы­ваемый принцип недостаточного основания, или одинако­вого распределения незнания. Согласно этому принципу, два события считаются равновероятными, если у нас не имеется основания для предположения, что одно из них осуществится скорее, чем другое. Поскольку же в качест­ве основания зачастую здесь выступало состояние зна­ний познающего субъекта, то само понятие вероятности лишалось своего объективного значения.

Читайте также:  Какое предсказание ждет россии

Частотная, статистическая или, как ее иногда называ­ют, эмпирическая концепция вероятности исходит не из наперед заданной, жесткой схемы равновозможных собы­тий, а из действительной оценки частоты появления того или иного события при достаточно большом числе испы­таний. В качестве исходного понятия здесь выступает относительная частота появления того или иного призна­ка, характеристики, свойства, которые принято называть событиями в некотором множестве или пространстве со­бытий. Поскольку относительная частота определяется с помощью некоторой эмпирической процедуры, то рас­сматриваемую вероятность иногда называют еще эмпири­ческой. Это не означает, что само теоретическое понятие вероятности в ее статистической или частотной интерпре­тации можно определить непосредственно опытным пу­тем. Как мы уже отмечали в предыдущей главе, ника­кого операционального определения для статистической вероятности дать нельзя, ибо помимо эмпирической про­цедуры при ее определении мы обращаемся к теоретиче­ским допущениям. В самом деле, осуществив те или иные наблюдения или эксперименты, мы можем точно подсчи­тать, сколько раз интересующее нас событие встречается в общем числе всех испытаний. Это отношение и будет представлять относительную частоту данного события:

,

где m означает число появлений данного события, а п — число всех испытаний. Хотя указанное отношение может принимать самые различные численные значения, тем не менее, как показывает практика, для весьма широкого класса случайных массовых событий оно колеблется во­круг некоторого постоянного значения, если число на­блюдений или экспериментов будет достаточно велико. Таким образом, тенденция к устойчивости частот обшир­ного класса массовых случайных явлений, обнаруженная на практике, представляет объективную закономерность этих явлений. Абстрактное понятие вероятности как ме­ры возможности наступления события отображает преж­де всего этот факт приблизительного равенства относи­тельной частоты вероятности при достаточно большом числе испытаний. Такой подход к вероятности защищает­ся большинством современных специалистов по статисти­ке. Он нашел свое выражение и в широко известном курсе «Математические методы статистики» Г. Крамера. «Всякий раз, — пишет он, — когда мы говорим, что ве­роятность события Е в эксперименте x равна Р, точный смысл этого утверждения заключается просто в следую­щем: практически несомненно, что частота события Е в длинном ряду повторений эксперимента x будет прибли­зительно равной Р. Это утверждение будет называться также частотной интерпретацией вероятности».

Частотный подход к вероятности дает возможность лучше понять специфические особенности статистических закономерностей. Поскольку любое вероятностное утвер­ждение в статистической интерпретации относится не к отдельному событию, а к целому классу однородных или сходных событий, постольку и объяснения и предсказа­ния, полученные с помощью статистических законов, не имеют такого строго однозначного характера, какой при­сущ динамическим законам. Чрезвычайно важно также отметить, что, в то время как в динамической закономер­ности необходимость выступает как бы в чистом виде, в статистической закономерности она прокладывает себе дорогу через массу случайностей. В совокупном действии многочисленных случайностей обнаруживается опреде­ленная закономерность, которая и отображается стати­стическим законом.

Читайте также:  Что будет с миром предсказание экстрасенсов

Как уже отмечалось, статистические закономерности с чисто формальной точки зрения отличаются от законо­мерностей динамического типа тем, что не определяют значение исследуемой величины достоверным образом, а указывают лишь ее вероятностное распределение. Ди­намический закон по своей математической форме может быть представлен функциональной связью типа:

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Название: Законы науки, способы их открытия и обоснования
Дата: 2007-06-09
Просмотрено 42701 раз

Источник

Динамические и статистические законы

Наука исходит из признания того, что все существующее в мире возникает и уничтожается закономерно, в результате дейв ствия определенных причин, что все природные, социальные ипсихические явления связаны между собой причинноследственными связями, а беспричинных явлений не бывает. Такая позиция называется детерминизмом в противоположность индетерминизму, отрицающему объективную причинную обусловленность явлений природы, общества и человеческой психики.

В современной физике идея детерминизма выражается в признании существования объективных физических закономерностей. Открытие этих закономерностей — существенных, повторяющихся связей между предметами и явлениями — задача науки, так же, как и формулирование их в виде законов науки, которые являются нашим знанием о природных закономерностях.

Физика знает два типа физических законов (теорий) — динамические и статистические законы.

Динамический законэто физический закон, отображающий объективную закономерность в форме однозначной связи физических величин, выражаемых количественно. Динамической теорией является физическая теория, представляющая совокупностьдинамических законов.

Исторически первой и наиболее простой теорией такого рода явилась классическая механика Ньютона. Другими динамическими теориями являются электродинамика Максвелла, механика сплошных сред, термодинамика и общая теория относительности (теория гравитации).

Долгое время считалось, что никаких других законов, кроме динамических, просто не существует. Это было связано с установкой классической науки на механистичность и метафизичность, со стремлением построить любые научные теории по образцу механики Ньютона. Если какие-то объективные процессы и закономерности не вписывались в предусмотренные динамическими законами рамки, не могли быть описаны абсолютно точно посредством определенного набора физических величин, делался вывод о недостатке наших познавательных способностей. Представление о том, что все объективные закономерности должны выражать однозначную связь физических объектов, оставалось незыблемым.

Такая позиция, связанная с отрицанием случайностей любого рода, с абсолютизацией динамических закономерностей и чаконов, называется механическим детерминизмом. Формулирование этого требования в жесткой форме обычно связывают с именем Пьера Лапласа. Согласно провозглашенному Лапласом принципу, все явления в природе предопределены с «железной» необходимостью. Случайному, как объективной категории, нет места в нарисованной Лапласом картине мира. Только ограниченность наших познавательных способностей заставляет рассматривать отдельные события в мире как случайные. В силу этих причин, а также отмечая роль Лапласа, классический механический детерминизм называют еще жестким, или лапласовским, детерминизмом.

Необходимость отказа от классического детерминизма в физике стала очевидной после того, как выяснилось, что динамические законы не универсальны и не единственны. Более того, оказалось, что при описании движения отдельных макроскопических тел, которое всегда считалось сферой действия динамических законов, осуществление идеального классического детерминизма практически невозможно.

В середине XIX в. в физике были сформулированы законы, предсказания которых не являются определенными, а только вероятными. Они получили название статистических законов.

Представление о законах и закономерностях особого типа, которых связи между величинами, входящими в теорию, неодпозначны, впервые ввел Максвелл в 1859 г. при построении статистической механики — первой фундаментальной теории нового типа. Он первым понял, что при рассмотрении систем, состоящих из огромного числа частиц (в данном случае — молекулы газа в сосуде), нужно ставить задачу иначе, чем в механике Ньютона. Для этого Максвелл ввел в физику понятие вероятности, выработанное ранее математиками при анализе случайных явлений, в частности азартных игр.

При бросании игральной кости, как мы знаем, может выпасть любое число очков от 1 до 6. Предсказать, какое число очков выпадет при данном броске кости, нельзя. Мы можем подсчитать лишь вероятность выпадения любого числа очков. В данном случае она будет равна 1/6. Эта вероятность имеет объективный характер, так как выражает объективные отношения реальности. Действительно, если мы бросим кость, какая-то сторона с определенным числом очков выпадет обязательно. Это такая же строгая причинно-следственная связь, как и та, что oтражается динамическими законами, но она имеет другую форму, так как показывает вероятность, а не однозначность события.

Проблема в том, что для обнаружения такого рода закономерностей обычно требуется не единичное событие, а цикл подобных событий. В данном случае мы можем получить статистические средние значения. Так, если бросить кость 300 раз, то среднее число выпадения любого значения будет равно 300 х 1/6 = 50 paз. При этом совершенно безразлично, бросать одну и ту же кость или одновременно бросить 300 одинаковых костей.

Статистические законы, в отличие от динамических законов, отражают однозначную связь не физических величин, а статистическое распределение этих величин. Результат, изменение состояния, которое определяется на основе соответствующих уравнений, также выражается не значениями физических величин, а вероятностями этих значений внутри заданных интервалов. Но это такой же однозначный результат, как и в динамических теориях. Ведь статистические теории, как и динамические теории, выражают необходимые связи в природе, а они не могут быть выражены иначе, чем через однозначную связь состояний. Различается только способ фиксации этих состояний.

На уровне статистических законов и закономерностей мы также сталкиваемся с причинностью. Но это иная, более глубокая форма детерминизма. В отличие от жесткого классического детерминизма он может быть назван вероятностным (современным) детерминизмом. Эти законы меньше огрубляют действительность, имеют менее сильные гносеологические предпосылки, поэтому они способны учитывать и отражать те случайности, которые происходят в мире.

Сегодня любой известный в природе процесс более точно описывается статистическими законами. Но окончательно это стало ясно после создания квантовой механики — статистической теории, описывающей явления атомарного масштаба, то есть движение элементарных частиц и состоящих из них систем. Тогда бьша выяснена принципиальная невозможность динамического описания этих процессов.

Дата добавления: 2016-02-27 ; просмотров: 3484 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Читайте также:  Можно ли верить предсказаниям гадалок
Оцените статью